Drug delivery to eye: Special reference to nanoparticles
Keywords:
Nanoparticle, polymer, ocular, bioavailabilityAbstract
Controlled and sustained delivery of ophthalmic drugs continues to remain a major focus area in the field of pharmaceutical drug delivery with the emergence of new, more potent drugs and biological response modifiers that may also have very short biological half-lives. The major objective of clinical therapeutics is to provide and maintain adequate concentration of drugs at the site of action. In ocular drug delivery, the physiological constraints imposed by the protective mechanisms of the eye lead to poor absorption of drugs with very small fractions of the instilled dose penetrating the cornea and reaching the intraocular tissues. The anatomy, physiology, and biochemistry of the eye render this organ highly impervious to foreign substances. A significant challenge to the formulator is to circumvent the protective barriers of the eye without causing permanent tissue damage. Development of newer, more sensitive diagnostic techniques and novel therapeutic agents continue to provide ocular delivery systems with high therapeutic efficacy. Conventional ophthalmic solution, suspension, and ointment dosage forms no longer constitute optimal therapy for these indications. Nanoparticles and nanosuspensions are showing a better application as compare to conventional delivery sysyems. Polymer nanoparticles proposed are reported to be devoid of any irritant effect on cornea, iris, and conjunctiva and thus appear to be a suitable inert carrier for ophthalmic drug delivery. The benefits of having the drug in the form of a nanoparticulate suspension are: reduction in the amount of dose, drug release for a prolonged period of time, higher drug concentrations in the infected tissue, longer residence time of nanoparticles on the cornea surface, reduction systemic toxicity of drug.
References
Lee VHL. Precorneal, corneal and postcorneal
factors. In: AK Mitra, ed. Ophthalmic Drug
Delivery Systems. New York: Marcel Dekker,
;p , 59–81
Tang NEML, Zuure PL, Pardo RD, Keizer RJW,
Van Best JA. Re.ex lacrimation in patients with
glaucoma and healthy control subjects by
uorophotometry. Invest Ophthalmol Vis Sci. 2000;
: 709–714.
White WL, Glover AT, Buckner AB. Effect of
blinking on tear elimination as evaluated by
dacryoscintigraphy. Ophthalmology. 1991; 98:
–369,
Ahmed I, Patton TF. Importance of non-corneal
absorption route in topical ophthalmic drug
delivery. Invest Ophthalmol Vis Sci. 1985; 26:
–587.
Schoenwald RD, Deshpande GS, Rethwisch DG,
Barfknecht CF. Penetration into the anterior
chamber via the conjunctival scleral pathway. J.
Ocul. Pharmacol. Ther. 1997; 13: 41–59.
Salminen L and Huupponen R. Systemic effects of
ocular drugs. Adv. Drug React. Acute Poison Rev.
; 8: 89-96.
Zaki I, Fitzgerald P, Hardy JG. A comparison of the
effect of viscosity on the precorneal residence time
of solutions in rabbit and man. J. Pharm.
Pharmacol. 1986; 38: 463-466.
Wang W, Sasaki H, Chien DS, Lee VHL.
Lipophilicity influence on conjunctival drug
penetration in the pigmented rabbit: a comparison
with corneal penetration. Current Eye Research.
; 10: 571-579.
Geroski DH and Edelhauser HF. Transscleral drug
delivery for posterior segment disease. Adv. Drug
Del. Rev. 2001; 52: 37-48.
Mishima S, Gasset A, Klyce SD, Baum JL.
Determination of tear volume and tear flow. Invest
Ophthalmol. 1966; 5: 264.
Chrai SS, Patton TF, Mehta A, Robinson JR.
Lachrymal and instilled fluid dynamics in rabbit
eye. J. Pharm. Sci. 1973; 62:1112–1121.
Ahmed I, Patton TF. Importance of non-corneal
absorption route in topical ophthalmic drug
delivery. Invest. Ophthalmol. Vis. Sci. 1985; 26:
–587.
Lee VH and Robinson JR. Topical ocular drug
delivery: recent developments and future
challenges. J.Ocular Pharmacol. 1986; 2: 67-108.
Stewart WC. Timolol hemihydrate: a new
formulation of timolol for the treatment of
glaucoma. J. Ocul. Pharmacol. Ther. 1996; 12:
–236.
Bernatchez SF, Camber O, Tabatabay C, Gurny R.
Use of hyaluronic acid. P Edman,
Biopharmaceutics of Ocular Drug Delivery. Boca
Raton, FL: CRC Press, 1993; 105–120.
Gurny R, Ibrahim H, Buri P. The development and
use of in situ formed gels, triggered by pH. P.
Edman, Biopharmaceutics of Ocular Drug
Delivery. Boca Raton, FL: CRC Press, 1993; 81–
Rozier A, Mazuel C, Grove J, Plazonnet B. Gelrite:
a novel, ion activated, in-situ gelling polymer for
ophthalmic vehicles: effect on bioavailability of
timolol. Int. J. Pharm. 1989; 57: 163–168.
Vogel R, Kulaga SF, Laurenc JK, Gross RL, Haik
BG, Karp D, Koby M, Zimmerman TJ. The effect
of a Gelrite vehicle on the efficacy of low
concentration of timolol. Invest Ophthalmol Vis
Sci. 1990; 31: 404.
Miller SC and Donovan MD. Effect of poloxamer
gel on the miotic activity of pilocarpine nitrate
in rabbits. Int. J. Pharm. 1982; 12: 147.
Merck & Co., 1989. US patent 4, 861,760.
Kumar S, Haglund BO, Himmelstein KJ. In situ–
forming gels for ophthalmic drug delivery. J. Ocul.
Pharmacol. 1994; 10: 47–56.
Ron ES. Smart Gel: A new thermogelling polymer
mixture for drug delivery. Proc. Sci. 1996; 22: 220–
Joseph R. Robinson and Gwen M. Mlynek.
Bioadhesive and phase-change polymers for ocular
drug delivery. Advanced Drug Delivery Reviews.
; 16: 45-50.
Haruyuki H, Akihito F, Yuka T, Yuri M and
Carmen AL. Ocular release of timolol from
molecularly imprinted soft contact lenses.
Biomaterials. 2005; 26: 1293-1298.
Hughes L and Maurice D. A fresh look at
iontophoresis. Arch. Ophthalmol. 1984; 102:1825-
Friedberg ML, Pleyer U and Mondino BJ. Device
drug delivery to the eye. Collagen shields,
iontophoresis, and pumps. Ophthalmology.1991;
: 725–732.
Kaufman HE, Steinemann TL, Lehman E,
Thompson HW, Varnell ED, Jacob Labarre JT,
Gebhardt BM. Collagen-based drug delivery and
artifcial tears. J. Ocul. Pharmacol. 1994; 10: 17–27.
Vyas SP, Ramchandraiah S, Jain CP and Jain SK.
Polymeric pseudolatices bearing pilocarpine for
controlled ocular delivery. J. Microencap. 1992; 9:
-355.
Rojanasakul Y, Paddock SW and Robinson JR.
Confocal laser scanning microscopic examination
of transport pathways and barriers of some peptides
across the cornea. Int. J.Pharm. 1990; 61:163.
Urquhart J. Development of Ocusert pilocarpine
ocular therapeutic systems. JR Robinson,
Ophthalmic Drug Delivery Systems. Washington,
DC: American Pharmaceutical Association, 1980;
–108.
Gurny R, Boye T, Ibrahim H. Ocular therapy with
nanoparticulate systems for controlled drug
delivery. J. Control Rel. 1985; 2: 353–36.
Lee VHL, Urrea PT, Smith RE, Schauzun DJ.
Ocular drug bioavailability from topically applied
liposomes. Surv. Ophthalmol. 1985; 29: 335–348.
Schaeffer HE, Krohn DL. Liposomes in topical
drug delivery. Invest Ophthal Vis. Pharmacol.
; 10: 17–27.
Bochot A, Fattal E, Grossiord JL, Puisieux F,
Couvreur P. Characterization of a new ocular
delivery system based on a dispersion of liposomes
in a thermosensitive gel. Int J Pharm. 1998; 162:
–127.
Naveh N, Muchtar S, Benita S. Pilocarpine
incorporated into a submicron emulsion vehicle
causes an unexpectedly prolonged ocular
hypotensive effect in rabbits. J. Ocul. Pharmacol.
; 10: 509–520.
Barratt GM. Therapeutic applications of colloidal
drug carriers. Pharm. Sci. Technol. 2000; 3: 163-
Couvreur P, Dubernet C, Puisieux F. Controlled
drug delivery with nanoparticles: current
possibilities and future trends. Eur. J. Pharm.
Biopharm. 1995; 41: 2-13.
Lee VHK, Wood RW, Kreuter J, Harima T,
Robinson JR. Ocular drug delivery of progesterone
using nanoparticles. J. Microen.1986; 3: 213.
Gurny R, Ibrahim H, Aebi A, Buri P, Wilson CG,
Washington N. Design and evaluation of controlled
release systems for the eye. J. Cont. Rel.1987;
:367.
Hui HW, Robinson JR. Ocular delivery of
progesterone using a bioadhesive polymer. Int. J.
Pharm. 1985. 26: 203.
Ambade AV, Savariar EN, Thayumanavan S.
Dendrimeric micelles for controlled drug release
and targeted delivery. Mol. Pharmacol. 2005; 2:
-272.
Mainardes RM, Urban MCC, Cinto PO, Khalil
NM, Chaud MV, Evangelista RC, Gremiao MPD.
Colloidal Carriers for Ophthalmic. Drug Delivery.
Curr. Drug Targets. 2005; 6: 363-371.
Alonso MJ. Nanomedecine for overcoming
biological barriers. Biomed. Pharmacother. 2004;
: 168-172.
Kreuter J, Tauber U, Illi V. Distribution and
elimination of poly methyl-2-14-(methacrylate)
nanoparticle radioactivity after injection in rat and
mice. J. Pharm. Sci.1979; 68:1443.
Kreuter J. Nanoparticles-Preparation and
applications. In: Microcapsules and Nanocapsules
in Medicine and Pharmacy, M. Don Brow (Eds.).
CRC Press Inc., Boca Raton, 1992; p. 126–143.
Gurny R. Latex systems. In: D. D. Breimer and P.
Speiser (Eds.). Topics in Pharmaceutical Sciences.
Elsevier Science Publishers B. V, Amsterdam,
; p. 277–288.
Wood RW, Li VHK, Kreuter J, Robinson JR.
Ocular disposition of poly-hexyl-2-cyano (3-14C)
acrylate nanoparticles in the albino rabbit. Int. J.
Pharm., 1985; 23:175.
Marchal-Heussler L, Maincent P, Hoffman H,
Spittler J, Couvreur P. Antiglaucomatous activity of
betaxolol chlorhydrate sorbed onto different
isobutyl cyanoacrylate nanoparticles preparations.
Int. J. Pharm., 1990; 58:115.
Losa C, Calvo P, Castro E, Vila-Jato JL, Alonso
MJ. Improvement of ocular penetration of amikacin
sulphate by association to poly (butyl
cyanoacrylate) nanoparticles. J. Pharm.
Pharmacol.1991; 43:548.
Zimmer A, Kreuter J, Robinson J. Studies on the
transport pathway of PBCA nanoparticles in ocular
tissues. J. Microencaps. 1991; 8 4: 497–504.
Losa C, Marchal-Heussler L, Orallo F, Vila JL,
Alonso MJ. Design of new formulations for topical
ocular administration: polymeric nanocapsules
containing metipranolol. Pharm. Res. 1993; 10:80.
Marchal-Haussler L, Fessi H, Devissaguet JP,
Hoffman M, Maincent P. Colloidal drug delivery
systems for the eye. A comparison of the efficacy
of three different polymers:
polyisobutylcyanoacrylate, polylactic-coglycolic
acid, poly-epsilon-caprolactone. Pharm. Sci.1992;
: 98.
Calvo P, Sanchez A, Martınez J, Lopez MI,
Calonge M, Pastor JC, Alonso MJ. Polyester
Nanocapsules as new topical ocular delivery
systems for cyclosporin A. Pharm. Res.1996;
:311.
Knapczyk J, Krowczynski L, Krzck, J, Brzeski M,
Nirnberg E, Schenk D, Struszcyk H. Requirements
of chitosan for pharmaceutical and biomedical
applications. In: Skak-Braek G, Anthonsen T,
Sandford P (Eds.), Chitin and Chitosan: Sources,
Chemistry, Biochemistry, Physical Properties and
Applications. Elsevier, London; 1989.p. 657–663.
Hirano S, Seino H, Akiyama I, Nonaka I. Chitosan:
a biocompatible material for oral and intravenous
administration. In: Gebelein CG, Dunn RL (Eds.),
Progress in Biomedical Polymers. Plenum Press,
New York; 1990.p. 283–289.
Calvo P, Vila-JL, Alonso MJ. Evaluation of
cationic polymer-coated nanocapsules as ocular
drug carriers. Int J. Pharm. 1997; 153: 41-50.
Genta I, Conti B, Perugini P, Pavaneto F, Spadaro
A, Puglisi G. Bioadhesive microspheres for
ophthalmic administration of acyclovir. J. Pharm.
Pharmacol. 1997; 49: 737–742.
Pignatello R, Bucolo C, Ferrara P, Maltese A, Pule
o A, Puglisi G. Eudragit RS100® nanosuspensions
for the ophthalmic controlled delivery of
ibuprofen. Eur. J. Pharm. Sci. 2002; 16: 53-61.
Pignatello R, Bucolo C, Spedalieri G, Maltese A, P
uglisi G. Flurbiprofen-loaded acrylate polymer
nanosuspensions for ophthalmic application.
Biomaterials. 2002; 23: 3247-3255.
Zimmer A, Mutschler E, Lambrecht G, Mayer D,
Kreuter J. Pharmacokinetic and Pharmacodynamic
aspects of an ophthalmic pilocarpine nanoparticledelivery-system. Pharm. Res.1994; 11:1435.
Diepold R, Kreuter J, Himber J, Gurny R, Lee
VHL, Robinson JR, Saettone M F, Schnaudigel
OE. Comparison of different models for the testing
of pilocarpine eyedrops using conventional
eyedrops as a novel depot formulation
(nanoparticles). Graefe’s Arch. Clin. Exp.
Ophthalmol., 1989; 227:188.
Gurny R. Ocular therapy with nanoparticles. In:
Polymeric Nanoparticles and Microspheres, P.
Guiot and P. Couvreur (Eds.). CRC Press, Boca
Raton, 1986; p. 127–136.
Conti B, Bucolo C, Giannavola C, Puglisi G,
Giunchedi P, Conte U. Biodegradable microspheres
for the intravitreal administration of acyclovir: in
vitro in vivo evaluation. Eur. J. Pharm. Sci.1997;
:287.
Agnihotri SM, Vavia PR. Diclofenac-loaded
biopolymeric nanosuspensions for ophthalmic
application. Nanomedicine: Nanotechnology,
Biology, and Medicine. 2009; 5: 90-95.