Biosynthesis, characterization and antibacterial activity of silver nanoparticles by soil fungi Pencillium sps
Keywords:
Silver nanoparticles, Biological synthesis, Characterization, Antibacterial activityAbstract
In the present days microbial synthesis of nanoparticles is an eco-friendly green chemistry approach that correlates with nanotechnology and microbial biotechnology. In this study exposure of fungal biomass to aqueous 1Mm AgNO3 solution resulted in the reduction of the metal ions by the nitrate reductase enzyme present in the fungal cell wall membranes and formation of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-visible spectroscopy, SEM, TEM and FTIR analysis and size and shapes were determined. The synthesed silver nanoparticles were exhibited an excellent antibacterial activities against both gram negative and gram positive pathogenic bacterial strains which causes the diseases in human beings.
References
. Simkiss K, Wilbur KM. Cell Biology
and Mineral Deposition,
Biomineralization, Academic Press,
New York, 1989.
. Mann S (ed.). Biomimetic Materials
Chemistry, VCH Publishers, 1996.
. Southam G, Beveridge TJ. Geochim,
Cosmochim. Acta. 1996;60, 4369ă
. Beveridge TJ, Murray RGE. Sites of
metal deposition in the cell wall of
Bacillus subtilis. J. Bacteriol. 1980;
, 876ă 887.
. Li P, Li J, Wu C , Wu Q , Li J.
Synergistic antibacterial effects of blactam antibiotic combined with silver
nanoparticles. Nanotechnology.
;16, 1912ă1917.
. Panacek A, Kvitek L, Prucek R, Kolar
M, Vecerova R, Pizurova N, Sharma
VK, Tatjana N, Zboril Z. Silver colloid
nanoparticles: synthesis,
characterization, and their
antibacterial activity. J. Phys Chem. B,
;110,16248ă16243.
. Mohanpuria P, Rana KN, Yadav SK.
Biosynthesis of
nanoparticles:technological concepts
and future applications. J. Nanopart.
Res. 2008;10, 507- 517.
. Gericke M, Pinches A. Microbial
production of gold nanoparticles. Gold
bull. 2006;39(1): 22-28.
. S Harley. Use of a simple colorimetric
assay to demonstrate conditions for
induction of nitrate reductase in
plants. Am. Biol. Teacher. 1993;55:
. Sastry M, Mayya KS, Patil V,
Paranjape DV, Hegde SG. Langmuirblodgett films of carboxylic acid
derivatized silver colloidal particles:
role of subphase pH ondegree of
cluster incorporation. J. PhyChem B,
;101:4954ă4958.
. Kerker MJ. Colloid Interf. Sci. 1985
;105: 297.
. Sosa IO, Noguez C, Barrera RG.
Optical properties of metal
nanoparticles with arbitrary shapes. J.
Phys. Chem. B, 2003;107: 6269ă
. Brause R, Moeltgen H, Kleinermanns
K. Characterization of laser-ablated
and chemically reduced silver colloids
in aqueous solution by UV/VIS
spectroscopy and STM/SEM
microscopy, Appl. Phys. B, Lasers
Opt. 2002;75 -711.
. Mukherjee P, Ahmad A, Mandal D,
Senapati S, Sainkar SR, Khan MI,
Parischa R, Ajaykumar PV, Alam M,
Kumar R, M Sastry,Bioreduction of
AuCl4- ions by the fungus, Verticillium
sp. And surface trapping of the gold
nanoparticles formed. NanoLett.
;1: 515ă519
. Ahmad A, Mukherjee P, Senapati S,
Mandal D, Khan MI, Kumar R, Sastry
M. Extracellular biosynthesis of silver
nanoparticles using the fungus
FusariumoxysporumBiointerfaces.
; 28: 313ă318.
. Huang J, Chen C, He N, Hong J, Lu
Y, Qingbiao L, Shao W, Sun D, Wang
XH, Wang Y, Yiang X. Biosynthesis of
silver and gold nanoparticles by novel
sundried Cinna- momumcamphora
leaf. Nanotechnology. 2007;18 -105.
. Luo L, Yu S, Qian S, Zhou T. J. Am
Chem Soc. 2005;127 -2822.
. Caruso F, Furlong DN, Ariga K,
Ichinose I, Kunitake T. Langmuir.
; 14 -4559.
. Van de Weert M, Haris PI, Hennink
WE, Crommelin DJA. Fourier
transform infrared spectrometric
analysis of protein con- formation:
effect of sampling method and stress
factors. Anal Biochem. 2001;297 -160.
. [20] Morones JR, Elechiguerra JL,
Camacho A, Holt K, Kouri JB,
Ramirez JT, Yacaman MJ. The
bactericidal effect of silver
nanoparticles, Nanotechnology, 2005.
; 2346ă2353.
. MacKeen PC, Person S, Warner SC,
Snipes W, Stevens SE. Silver-Coated
Nylon Fiber as an Antibacterial Agent,
Antimicrob. Agents Chemother. 1987;
, 93ă99.
. Li Z, Lee D, Sheng X, Cohen RE,
Rubner MF. Two-Level Antibacterial
Coating with Both Release-Killing and
Contact-Killing Capabilities, Langmuir.
;22, 9820ă9823.
. Jeong SH, Hwnag YH, Yi SC. Ant b
cte l properties of padded PP/PE
nonwovens incorporating nano-sized
silver colloidsJ. Mater Sci. 2005;40,
ă5418.
. Lok CM, Ho CM, Chen R, He QY, Yu
WY, Sun H, Tam PK, Chiu JF, Che
CM. Proteomic analysis of the mode
of antibacterial action of silver
nanoparticles J. Proteome Res. 2006;
, 916ă924.
. Lee D, Cohen RE, Rubner MF.
Heterostructured Magnetic
Nanotubes, Langmuir. 2005;21,
ă9659.
. Thiel J, Pakstis L, Buzby S, Raffi M,
Ni C, Pochan DJ, Shah SI.
Antibacterial Properties of SilverDopedTitania, Small. 2007;3, 799ă
. Lee HJ, Yeo SY, Jeong SH.
Antibacterial effect of nanosized silver
colloidal solution on textile fabrics J.
Mater. Sci. 2003;38(10), 2199.
. Kokkoris M, Trapalis CC, Kossionides
S, Vlastou R, Nsouli B, Grotzschel R,
Spartalis S, Kordas G, Paradellis T.
RBS and HIRBS studies of
nanostructured AgSiO2 solăgel thin
coatings. Nucl.Instrum.Meth. B,
;188, 67.