n-vitro Modeling of the Release Kinetics of Micron and Nano-Sized Polymer Drug Carriers

Authors

  • Negin Razavilar Department of Chemical and Materials Engineering University of Alberta Edmonton, Alberta CANADA
  • Phillip Choi Department of Chemical and Materials Engineering University of Alberta Edmonton, Alberta CANADA

Keywords:

Diffusion, Continuum models, Swelling, Degradation, Micelles, Molecular dynamics simulation

Abstract

This article reviews in-vitro modeling of the release kinetics of hydrophobic drugs encapsulated by polymeric materials. Major continuum models along with their assumptions and limitations for micron-sized systems will be considered. The dependence on the swelling and degradation for such systems will also be discussed. As polymer micelles have gained popularity in the past decades, applications and limitations of continuum models to such nano-sized systems will be examined. A different approach based on molecular dynamics simulation will be introduced

References

. S.D.Bruck, Problems and artifacts in the

evaluation of polymeric materials for

medical uses,Biomaterials, 1 (1980)

-107.

. Y.W.Chien, B.E.Cabana,

S.E.Mares,Novel drug delivery systems:

fundamentals, developmental concepts,

biomedical assessments, M.

Dekker,14(1982) 633.

. R.Langer, Implantable controlled release

systems, Pharm Ther, (1983) 21-35.

. R.Langer, Invited Review Polymeric

Delivery Systems For Controlled Drug

Release, Chemical Engineering

Communications, 6(1980) 1-48.

. R.Langer, Medical Applications of

Controlled Release, CRC Press, FL, 2

(1986).

. G.S. Kwon, Polymeric micelles for

delivery of poorly water soluble

compounds, Drug Carrier Systems, 20

(2003) 357-403.

. M.D. Allen, A.Eisenberg, Nanoengineering block copolymer aggregates

for drug delivery, Colloids Surf., B

Biointerfaces, 16 (1999) 3-27.

.

. [8] A.Lavasanifar, G.S.Kwon,

Poly(ethylene oxide)-block-poly(-amino

acid) micelles for drug delivery, Adv

Drug Deliv Rev., 54 (2002) 169-190.

. H.A.Kataoka, Y.Nagasaki, Block

copolymer micelles for drug delivery:

design, characterization and biological

significance, Adv Drug Deliv Rev., 47

(2001) 113-131.

. S.N.H.Aerts, M.A.R.Meier, B.B.P. Staal,

M.Rasa,U.S.Schubert, Detailed

Characterization and Selected Micellar

Drug Encapsulation Behavior,

Macromolecules, 26 (2005) 1918-1924.

. A. Fick, On liquid diffusion,Membr Sci.,

(1995) 33-38.

. T. Higuchi, Rate of release of

medicaments from ointment bases

containing drugs in suspensions, Pharm

Sci., 50 (1961) 874-875.

. W.I.Higuchi, T.J. Roseman, Release of

medroxyprogesterone acetate from a

silicone polymer, Pharm Sci. , 59 (1970)

-357.

. T.J. Roseman, Release of steroids from

a silicone polymer, Pharm Sci. , 61

(1972) 46-50.

. P. Lee, Diffusional release of a solute

from a polymeric matrix-approximate

analytical solutions, Membr Sci. , 7

(1980) 255-275.

. J. Crank, The mathematics of diffusion,

Oxford University Press Inc., New York,

(1956) 1-32.

. J. Crank, The mathematics of diffusion,

Oxford University Press Inc., New York,

(1956) 1-32.

. P.S. E. D'Aurizio, L. S. Cerasa, M.

Vacca, L. Brunetti, G. Orlando, A.

Chiavaroli, R. J. Kok, W. E. Hennink,

and A. Di Stefano, Biodegradable

microspheres loaded with an antiparkinson prodrug: an in vivo

pharmacokinetic study, Mol

Pharmaceutics, 8 (6) (2011) 2408-2415.

. J. Siepmann, Modeling of diffusion

controlled drug delivery, Controlled

Release, 161 (2012) 351-362.

. G.W. Sinclair, N.A.Peppas, Analysis of

non-Fickian transport in polymers using

simplified exponential expressions,

Membr Sci., 17 (1984) 329-331.

. G.E.Alfrey,W.G.Lloyd, Diffusion in

glassy polymers, Polym Sci C., 12

(1966) 249-261.

. P.L. Ritger, N.A.Peppas,A simple

equation for decription of solute

release:Fickian and non-Fickian release

from non-swellable devices in the form

of slabs spheres,cylinders or discs,

ControlledRelease, 5 (1987) 23-26.

. R. Beker, Controlled Release of

Biologically Active Agents, John Wiley &

Sons, New York, 2(1987).

. W.C. Z. Lu, J.H.Hamman, Chitosanpolycarbophil interpolyelectrolyte

complex as a matrix former for

controlled release of poorly watersoluble drugs I in vitro evaluation, Drug

Development and Industrial Pharmacy,

(5) (2010) 539-546.

. N.A. Peppas, Analysis of Fickian and

non-Fickian drug release from polymers,

Pharm Acta Helv, 60 (1985).

. W.C. Z. Lu, J.H.Hamman, Chitosanpolycarbophil interpolyelectrolyte

. S.K. Nielsen, M. L., In Bridging time

scales: Molecular simulations for the

next decade, Berlin, Germany, 2002.

. S.L. Nielsen, C. F.; Srinivas, G.; Klein,

M. L., J. Chem. Phys., 119 (2003).

. R.L. Goetz, R. , J. Chem. Phys., 108

(1998).

. N.H. Berhane, Nyquist, C., Haghighi, K.,

Corvalan, C., Keshavarzian, A.,

Campanella, O., Rickus, J., Farhadi, A.,

A multi-scale stochastic drug release

model for polymer-coated targeted drug

delivery systems, Journal of Controlled

Release, 110 (2006) 314-322.

. S.M.D. ]. C.E. Holy, J.E. Davies, M.S.

Shoichet., In vitro degradation of a novel

poly(lactide-co-glycolide) 75/25 foam,

Biomaterials, 20 (1999) 1177ă1185.

. Encyclopedia of biopharmaceutical

statistics, Informa Health Care, New

York, 2003.

. R.C. Dutta, Rai, B., Molecular Dynamics

Study of Drug Diffusion In Hydrogels :

Effect of Cross-Linking, in: AICHE 2011.

Downloads

Published

2013-12-31

How to Cite

Negin Razavilar, & Phillip Choi. (2013). n-vitro Modeling of the Release Kinetics of Micron and Nano-Sized Polymer Drug Carriers. International Journal of Drug Delivery, 5(4), 362–378. Retrieved from https://ijdd.arjournals.org/index.php/ijdd/article/view/215

Issue

Section

Review Article