Recent advances in particulate anti-malarial drug delivery systems: A review

Authors

  • Chukwuebuka Umeyor Drug Delivery and Nanotechnology Research Unit, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
  • Franklin Kenechukwu Drug Delivery Research Unit, Department of Pharmaceutics and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
  • Emmanuel Uronnachi Drug Delivery and Nanotechnology Research Unit, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
  • Salome Chime Drug Delivery Research Unit, Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Joy Reginald Opara Drug Delivery Research Unit, Department of Pharmaceutics and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
  • Anthony Attama Drug Delivery Research Unit, Department of Pharmaceutics and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.

Keywords:

Malaria, dendrimers, SEDDS, NLCs, SLNs, artesunate, ACTs

Abstract

Malaria remains a tremendous health burden in tropical areas, causing a life-threatening disease and accounts for 1 to 2 million deaths round the globe yearly. Researchers have explored different novel approaches to deliver and improve the biopharmaceutical performance of drugs used in malaria chemotherapy. These novel drug delivery systems (NDDS) enhanced bioavailability of these drugs and also may offer controlled release of these drugs. The major aim of the NDDS is to improve the efficacy of these drugs, and at the same time to eliminate their toxicity. These NDDS include: micro/nanoparticulate DDS, emulsion based DDS, dendrimers and liposomes among others. The development of these particulate carriers as vehicles for the delivery of active compounds is a novel area of research that provides a new hope in malarial chemotherapy. The work presents various trends in malarial chemotherapy, as well as an exhaustive screening of different particulate drug delivery systems (PDDS) and the recent advances in the delivery of antimalarial drugs using the novel particulate drug delivery systems (NPDDS).

References

. Nielsen FS, Petersen KB, Ilertz AM.

Bioavailability of probucol from lipid

and surfactant based formulations in

minipigs: Influence of droplet size and

dietary state. Eur. J Pharm. Biopharm.

; 69: 553-562.

. Gilhotra RM, Bhardwaj VP, Mishra DN.

A Comparative review of recently

developed Particulate drug carrier

systems. Accessed online at

pharmainfo.net on 4th April, 2012 at

:05 pm.

. Gao P, Guyton ME, Huang T, Bauer

JM, Stefanski KJ, Lu Q. Enhanced oral

bioavailability of a poorly water soluble

drug PNU-91325 by supersaturable

formulations. Drug Dev. Ind. Pharm.

; 30: 221-229.

. Hou DZ, Xie CS, Huang K, Zhu CH.

The Production and Characteristics of

Solid lipid nanoparticles (SLN).

Biomaterials, 2003; 24: 1781-1785.

. Sarkar NN. Mifepristone: bioavailability,

pharmacokinetics and Usefuleffectiveness. Eur. J. Obstet.

Gynaecol. Reprod. Biol. 2002; 101:

-120.

. You J, Cui F, Li Q, Han X, Yu Y, Yang

M. A novel formulation design about

water-insoluble oily drug: Preparation

of zedoaryl turmeric oil microspheres

with self emulsifying ability and

evaluation in rabbits. Int. J. Pharm.

; 288: 315-323.

. Fouad EA, El-badry M, Mahrous GM,

Alsarra IA, Alashbban Z, Alanazi FK. In

vitro investigation for embedding

dextromethorphan in lipids using spray

drying. Digest J Nanomat Bio 2011;

(3):1129-1139.

. Porter CJH, Trevaskis NL, Charman

WN. Lipids and lipid based

formulations: optimizing the oral

delivery of lipophilic drugs. Nature Rev.

; 6: 231-248.

. Pouton CW. Lipid formulations for oral

administration of drugs: non

emulsifying, self ă emulsifying and self

micro emulsifying drug delivery

systems. Eur. J. Pharm. Sci. 2000; 11:

-98.

. Greenwood B, Mutabingwa T. Malaria

in 2002. Nature, 2002; 415: 670-672.

. World Health Organization (WHO).

Management of Severe malaria: A

Practical Handbook. 2nd ed. 2000.

p.84.

. Marsh K. Malaria disaster in Africa.

Lancet. 1998;352: 1965-1967.

. Santos-Magalhaes NS, Mosqueira

VCF. Nanotechnology Applied to the

treatment of malaria. Adv. Drug Deliv.

Rev. 2010;62: 560-575.

. Joshi M, Pathak S, Sharma S,

Patravale V. Solid microemulsion

preconcentrate (NanOsorb) of

artemether for effective treatment of

malaria. Int. J. Pharm. 2008;362: 172-

. World Health Organization. World

Malaria Report

WHO/HTM/GMP/2008.1.WHO,

Geneva, 2008.

. United Nations Millennium

Development Goals, 2002. Accessed

on 4th April, 2012.

. Thanh NV, Cowman AF, Hipgrave D,

Kim TB, Phuc BQ, Cong LD, Biggs BA.

Assessment of susceptibility of

Plasmodium falciparum to Chloroquine,

Quinine, Mefloquine, SulphadoxinePyrimethamine and Artemisinin in

Southern Vietnam. Trans. Royal Soc.

Trop. Med. Hyg. 2009;95: 513-517.

. Semete B, Kalombo L, Katata L, Swai

H. Nano-drug Delivery Systems:

Advances in TB, HIV and Malaria

Treatment. Smart Biomol. Med. 2010;

-52.

. Crawley J. Malaria: new challenges,

new treatments. Curr. Paed. 1999;9:

-41

. Scholte EJ, Knols BGJ, Takken W.

Infection of the malaria mosquito

Anopheles gambiae with the

entomopathogenic fungus Metarhizium

anisopliae reduces blood feeding and

fecundity. J Invert. Pathol. 2006;91: 43-

. Willcox ML, Rakotondrazafy E,

Andriamanalimanana R, Andrianasolo

D, Rasoanaivo P. Decreasing clinical

efficacy of Chloroquine in Ankazobe,

Central Highlands of Madagascar.

Trans. Roy. Soc. Trop. Med. Hyg.

;98: 311-314.

. OÊMeara WP, Bejon P, Mwangi TW,

Okiro EA, Peshu N, Snow RW, Newton

CR, Marsh K. Effect of a fall in malaria

transmission on morbidity and mortality

in Kiliji, Kenya. The lancet. 2008;372:

-1562.

. Snow RW, Marsh K. The epidemiology

of clinical malaria among African

children. Bulletin de lÊInstitut Pasteur.

;96: 15-23.

. Obonyo CO, Juma EA, Ogutu BR,

Vulude JM, Lau J. Amodiaquine

combined with

Sulphadoxine/Pyrimethamine versus

Artemisinin-based Combinations for the

treatment of Uncomplicated falciparum

malaria in Africa: a meta-analysis.

Trans Roy. Trop. Med. Hyg. 2007;101:

-126.

. Smrkovski LL, Buck RL, Alcantara AK,

Rodriguez CS, Uylangco CV. Studies

of resistance to Chloroquine, Quinine,

Amodiaquine and Mefloquine among

Philippine strains of P. falciparum.

Trans. Roy. Soc. Trop. Med. Hyg.

;79: 37-41.

. Murray M, Farrell GC. Effects of

Primaquine on hepatic microsomal

haemoproteins and drug oxidation.

Toxicol. 1986;42: 205-217.

. Quinine. Drug Encyclopaedia. [Online]

Available at

http://www.encyclopedia.com/topic/quin

ine.aspx. Accessed on 25 April 2012.

. Chloroquine Phospahte. Antibioticlist.

[Online] Available at

http://www.antibioticlist.com/chloroquin

e.html. Accessed on 25 April 2012.

. Klayman DL. Qinghaosu (Artemisinin):

An Anti-malarial drug from China.

Science. 1985;228: 1049-1055.

. Luska X. China Reconstructs. 1979; p.

. Butler AR, Wu YL. Artemisinin

(Qinghaosu): A New type of Antimalarial Drug. Chem. Soc. Rev. 1992;

(2): 85-90.

. World Health Organization. Guidelines

for the Treatment of malaria. 1st ed

World Malaria Report

WHO/HTM/MAL/2006.1108.WHO,

Geneva.

. Nosten F, White NJ. Artemisinin-based

combination treatment of falciparum

malaria. Amer. J. Trop. Med. Hyg.

; 77(6): 181-192.

. Jambou R, Legrand E, Niang M, Khim

N, Lim P, Volney B, Ekala MT,

Bouchier C, Esterre P, Fandeur T,

Mercereau-Puijalon O. Resistance of

P. falciparum field isolates to in vitro

artemether and point mutations of the

SERCA-type pfATPase 6. Lancet.

;366: 1960-1963.

. Anon. Resistance to artemisinin

derivatives along the Thai-Cambodian

border. Weekly Epidemiological

Record. 2007; 82: 360.

. Afonso A, Hunt P, Cheesman S, Alves

AC, Cunha CV, de Rosario V, Cravo P.

Malaria parasites can develop stable

resistance to artemisinin but lack

mutations in candidate genes atp6

(encoding the sarcoplasmic and

endoplasmic reticulum Ca2+ ATPase),

tctp, mdr1, and cg10. Antimicrob.

Agents Chemother. 2006;50: 480-488.

. Puri SK, Chandra R. Plasmodium

vinckei: Selection of a strain exhibiting

stable resistance to arteether. Exp.

Parasitol. 2006;114: 129-132.

. Ogbonna A, Uneke C. Artemisininbased Combination therapy for

uncomplicated malaria in Sub-Saharan

Africa: the efficacy, safety, resistance

and policy implementation since Abuja

Trans. Roy. Soc. Trop. Med.

Hyg. 2008; 102 (7): 621-627.

. Bloland PB. A Contrarian view of

malaria therapy policy in Africa. Am. J.

Trop. Med. Hyg. 2003; 68 (2): 125-126.

. Lindegardh N, Hampithakong W,

Kamanikom B, Singhasivanon P,

Socheat D, Yi P, Dondorp AM,

McGready R, Nosten F, White NJ, Day

NPJ. Major pitfalls in the measurement

of artemisinin derivatives in plasma in

clinical studies. J. Chromatogr. B.

; 876: 54-60.

. Sosnik A, Amiji M. Nanotechnology

solutions for infectious diseases in

developing nations. Adv. Drug Deliv.

Rev. 2010;62: 375-377.

. Pinto-Alphandary H, Andremont A,

Couvreur P. Targeted delivery of

antibiotics using liposomes and

nanoparticles: research and

applications. Int. J. Antimicrob. Agents.

;13: 155-168.

. Canchetier E, Paul M, Rivollet D, Fessi

H, Astier A, Deinaiu M. Therapeutic

evaluation of free and nanocapsuleencapsulated atovaquone in the

treatment of immune visceral

leishmaniasis. Ann. Trop. Med.

Parasitol. 2003;97: 259-268.

. 44. Mosqueira VCF, Loiseau PM,

Bories C, Legrand P, Devissaguet JP,

Barrat G. Efficacy and

Pharmacokinetics of intravenous

nanocapsule formulations of

halofantrine in Plasmodium bergheiinfected mice. Antimicrob. Agents

Chemother. 2004;48: 1222-1228.

. Langer R. Polymers for the sustained

release of proteins and other

macromolecules. Nature 1976;263:

-800.

. Makino K, Shibata A. Surface

properties of Liposomes depending on

their composition. Volume. 2006;4: 49-

. New RRC, Torchilin VP, Weissig V,

editors. Liposomes (Practical

Approach). London: Oxford University

Press, 2003. p. 20.

. Lasic DD, Papahadjopoulos D, editors.

Medical Application of Liposomes.

Amsterdam, Netherlands: Elsevier

Science B. V., 1998. p. 45.

. Malam Y, Loizidou M, Seifalian AM.

Liposomes and nanoparticles:

nanosized vehicles for drug delivery in

cancer. Trends Pharmacol. Sci. 2009;

(11): 592-599.

. Liposome. MyVisiontest. [online].

Available at

http://www.myvisiontest.com/newsarchi

ve.php?id=816. Accessed on 30 April,

. Nastruzzi C, Cortesi R, Esposito E,

Gambari R, Borgatti M, Bianchi N,

Feriotto G, Mischiati C. Liposomes as

carriers for DNA PNA hybrids. J Control

Rel. 2000; 68 (2): 237-249.

. Welz C, Neuhuber W, Schreier H,

Repp R, Rascher W, Fahr A. Nuclear

gene targeting using negatively

charged liposomes. Int. J. Pharm.

; 196 (2): 251-252.

. Mader C, Kupau S, Sleytr UB, Sara M.

S-layer coated liposomes as a versatile

system for entrapping and binding

target molecules. Biochem Biophys

Acta Biomembranes. 2000; 1463 (1):

-150.

. Weingarten C, Moufti A, Desjeux JF.

Oral ingestion of insulin liposomes:

Effects of the administration route. Life

Sci. 1981;28: 2747-2752.

. Laham A, Claperon N, Durussel JJ,

Fattal E, Delattre J, Puisieux F,

Couvreur P, Rossignol P. Intracarotidal

administration of liposomally-entrapped

ATP: Improved efficacy against

experimental brain ischemia.

Pharmacol. Res. Commun. 1988;20:

-705.

. Allison AC, Gregonadis G. Liposomes

as immunological adjuvants. Nature.

;252: 252.

. Alving CR, Richards RL. Liposomes

containing lipid A: A potent non-toxic

adjuvant for a human malaria

sporozoite vaccine. Immunol. Lett.

;25: 275-279.

. Madden TD, Harrington PR, Tai LCL,

Bally MB, Mayer LD, Redelmeier TE,

Loughrey HC, Tilcock CPS, Reinish

TW, Cullis PR. The accumulation of

drugs within large unilamellar vesicles

exhibiting a proton gradient: a survey.

Chem. Phys. Lipids. 1990;53: 37-46.

. Cullis PR, Hope MJ, Bally MB, Madden

TD, Mayer LD, Fenske DB. Influence of

pH gradients on the transbilayer

transport of drugs, lipids, peptides and

metal ions into large unilamellar

vesicles, BBA-Rev. Biomembranes.

;1331: 187-211.

. Stensrud G, Sande AS, Kristensen S,

Smistad G. Formulation and

Characterization of Primaquine loaded

liposomes prepared by a pH gradient

using experimental design. Int. J.

Pharm. 2000;198: 213-228.

. Arica B, Ozer AY, Ercam MT, Hincal

AA. Characterization, in vitro and in

vivo studies on primaquine

diphosphate liposomes. J

Microencapsul. 1995; 12 (5): 469-485.

. Gabriels M, Plaizier-Vercammen JA.

Physical and Chemical evaluation of

liposomes containing artesunate. J

Pharm. Biomed. Anal. 2003;31: 655-

. Chimanuka B, Gabriels M,

Detaeveriner MR, Plaizier-Vercammen

JA. Preparation of β-artemether

liposomes, their HPLC-UV evaluation

and relevance for clearing

recrudescent parasitaemia in

Plasmodium chabaudi malaria-infected

mice. J. Pharm. Biomed. Anal.

;28: 13-22.

. Bayomi MA, Al-Angary AA, Al-Mashal

AA, Al-Dardiri MM. In vivo evaluation of

arteether liposomes. Int. J. Pharm.

;175: 1-7.

. 65. Isacchi B, Bergonzi MC, Grazioso

M, Righeschi C, Pietretti A, Severini C,

Bilia AR. Artemisinin and artemisinin

plus curcumin liposomal formulations:

Enhanced anti-malarial efficacy against

Plasmodium berghei-infected mice.

Eur. J. Pharm. Biopharm. 2012;80:

-534.

. Soma CE, Dubernet C, Barratt G,

Benita S, Couvreur P. Investigation of

the role of macrophages on the

cytotoxicity of doxorubicin and

doxorubicin-loaded nanoparticles on

M5076 cells in vitro. J. Control. Rel.

;68: 283-289.

. Barratt GM. Therapeutic applications of

colloidal drug carriers. Pharm. Sci.

Technol. Today. 2000;3: 163-171.

. Vauthier C, Couvreur P.

Nanaomedicines: a new approach for

the treatment of serious diseases. J.

Biomed. Nanotechnol. 2007;3: 223-

. Forrest MI, Kwon GS. Clinical

developments in drug delivery

nanotechnology. Adv. Drug Deliv. Rev.

;60: 861-862.

. Barratt G. Colloidal drug carriers:

Achievements and Perspectives. Cell.

Mol. Life Sci. 2003;60: 21-37.

. Devalapally H, Cliakilam A, Amiji MM.

Role of nanotechnology in

Pharmaceutical product development.

J Pharm. Sci. 2007;96: 2547-2565.

. Kayser O, Kiderlen AF. Delivery

strategies for antiparasitics. Expert

Opin. Invest. Drugs. 2003;12: 197-207.

. Date AA, Joshi MD, Patravale VB.

Parasitic diseases: Liposomes and

polymeric nanoparticles versus lipid

nanoparticles. Adv. Drug Deliv. Rev.

;59: 505-521.

. Joshi M, Pathak S, Sharma S,

Patravale V. Design and in vivo

Pharmacodynamic evaluation of

nanostructured lipid carriers for

parenteral delivery of artemether:

Nanoject. Int. J. Pharm. 2008;364: 119-

. Wissing SA, Kayser O, Muller RH.

Solid Lipid nanoparticles for parenteral

drug delivery. Adv. Drug Deliv. Rev.

;56: 1257-1272.

. De Vries PJ, Dien TK. Clinical

pharmacology and therapeutic potential

of artemisinin and its derivatives in the

treatment of malaria. Drugs. 1996;52:

-836.

. Joshi M, Patravale V. Nanostructured

Lipid Carrier (NLC) based gel of

celecoxib. Int. J. Pharm. 2008;346:

-132.

. Yameogo JBG, Geze A, Choisnard L,

Putaux J-L, Gansane A, Sirima SB,

Semde R, Wouessidjewe D. Selfassembled biotransesterified

Cyclodextrins as Artemisinin

nanocarriers ă I: Formulation,

lyoavailability and in vitro antimalarial

activity assessment. Eur. J. Pharm.

Biopharm. 2012;80: 508-517.

. Klang S, Benita S. Design and

evaluation of submicron emulsions as

colloidal drug carriers for intravenous

administration. In: Benita S, editor.

Submicron emulsions in drug targeting

and delivery. Drug Targeting and

Delivery. vol. 9. Amsterdam: Harwood

Academic Publishers, 2000. p. 119-

. Singh K, Vingkar S. Formulation,

antimalarial activity and biodistribution

of oral lipid nanoemulsion of

primaquine. Int. J. Pharm. 2008;347:

-143.

. Daniels R. Galenic Principles of

modern skin care products. Skin care

Forum, 2001, 25.

. Sonneville-Auburn O, Simonnet JT,

LÊAlloret F. Nanoemulsions: a new

vehicle for skin care products. Adv.

Colloid. Interface Sci. 2004;108-109:

-149.

. Lawrence MJ, Rees GD.

Microemulsion-based media as novel

drug delivery systems. Adv. Drug Deliv.

Rev. 2000;45: 89-121.

. Alagusundaram M, Madhu SCC,

Umashankari K, Attuluri VB, Lavanya

C, Ramkanth S. Microspheres as a

novel drug delivery system ă A review.

Int. J. ChemTech Res. 2009; 1(3): 526-

. Attama AA, Igbonekwu CN. In vitro

properties of surface-modified solid

lipid microspheres containing an

antimalarial drug: Halofantrine. Asian

Pac. J. Trop. Med. 2011; 4(4): 253-258.

. Nishi KK, Jayakrishnan A. Preparation

and in vitro evaluation of Primaquineconjugated gum Arabic microspheres.

Trends Biomater. Artif. Organs. 2005;

(2): 191-197.

. Svenson SN, Tomalia DA. Dendrimers

in biomedical applications-reflections

on the field. Adv. Drug. Deliv. Rev.

;57: 2106-2129.

. Florence AT. Dendrimers: a versatile

targeting platform. Adv. Drug Deliv.

Rev. 2005;57: 2104-2105.

. Tomalia DA, Naylor AM, Goddard III

WA. Starburst dendrimers: Molecular

level control of size, shape, surface

chemistry, topology and flexibility from

atoms to macroscopic matter. Angew

Chem Int Ed Engl 1990;29: 138-175.

. Umesh G, Hrushikesh BA, Abhay A,

Narendra KJ. A review of in vitro-in vivo

investigations on dendrimers: the novel

nanoscopic drug carriers. Nanomed:

Nanotech. Biol. Med. 2006;2: 66-73.

. Bhadra D, Yadav AK, Bhadra S, Jain

NK. Glycodendrimeric nanoparticulate

carriers of primaquine phosphate for

liver targeting. Int. J. Pharm. 2005;295:

-233.

. Dendrimers. Nanodic.com. [Online]

Available at

http://www.nanodic.com/nanomaterial/

Dendrimer.htm. Accessed on 20 April,

. Bhadra D, Bhadra S, Jain NK.

PEGylated peptide dendrimeric carriers

for the delivery of antimalarial drug

chloroquine phosphate. Pharm. Res.

;23: 623-633.

. Bhadra D, Bhadra S, Jain NK.

Pegylated Lysine-based copolymeric

dendritic micelles for solubilization and

delivery of artemether. J Pharm

Pharmaceut Sci. 2005; 8(3): 467-482.

. Wakerly MG, Pouton CW, Meakin BJ,

Morton FS. Self-emulsification of

vegetable oil-non-ionic surfactant

mixtures. ACS Symp. Ser. 1986;311:

-255.

. Charman SA, Charman WN, Rogge

MC, Wilson TD, Dutko FJ, Pouton CW.

Self-emulsifying drug delivery systems:

formulation and biopharmaceutic

evaluation of an investigational

lipophilic compound. Pharm. Res.

;9: 87-93.

. Constantinides PP. Lipid

microemulsions for improving drug

dissolution and oral absorption:

Physical and biopharmaceutical

aspects. Pharm. Res. 1995;12: 1561-

. Craig DQM. The Use of selfemulsifying systems as a means of

improving drug delivery. B.T,

Gattefosse. 1993;86: 21-31.

. Gershanik T, Benita S. Self-dispersing

lipid formulations for improving oral

absorption of lipophilic drugs. Eur. J.

Pharm. Biopharm. 2000;50: 179-188.

. Rajesh BV, Reddy TK, Srikanth G,

Mallikarjun V, Nivethithai P. Lipidbased self-emulsifying drug delivery

system (SEDDS) for poorly water

soluble drugs: A review. J. Global

Pharm. Tech. 2010; 2(3): 47-55.

. Khoo S-M, Humberstone AJ, Porter

CJH, Edwards GA, Charman WN.

Formulation design and bioavailability

assessment of lipidic self-emulsifying

formulations of Halofantrine. Int. J.

Pharm. 1998;167: 155-164.

. Mandawgade SD, Sharma S, Pathak

S, Patravale VB. Development of

SMEDDs using natural lipophile:

Application to β-Artemether delivery.

Int. J. Pharm. 2008;362: 179-183.

. Kuentz M, Wyttenbach N, Kuhlmann O.

Application of a statistical method to

the absorption of a new model drug

from micellar and lipid formulations ă

evaluations of qualitative excipient

effects. Pharm Dev Technol. 2007;12:

-283.

Downloads

Published

2013-03-31

How to Cite

Chukwuebuka Umeyor, Franklin Kenechukwu, Emmanuel Uronnachi, Salome Chime, Joy Reginald Opara, & Anthony Attama. (2013). Recent advances in particulate anti-malarial drug delivery systems: A review. International Journal of Drug Delivery, 5(1), 1–14. Retrieved from https://ijdd.arjournals.org/index.php/ijdd/article/view/176

Issue

Section

Review Article

Most read articles by the same author(s)