Recent advances in particulate anti-malarial drug delivery systems: A review
Keywords:
Malaria, dendrimers, SEDDS, NLCs, SLNs, artesunate, ACTsAbstract
Malaria remains a tremendous health burden in tropical areas, causing a life-threatening disease and accounts for 1 to 2 million deaths round the globe yearly. Researchers have explored different novel approaches to deliver and improve the biopharmaceutical performance of drugs used in malaria chemotherapy. These novel drug delivery systems (NDDS) enhanced bioavailability of these drugs and also may offer controlled release of these drugs. The major aim of the NDDS is to improve the efficacy of these drugs, and at the same time to eliminate their toxicity. These NDDS include: micro/nanoparticulate DDS, emulsion based DDS, dendrimers and liposomes among others. The development of these particulate carriers as vehicles for the delivery of active compounds is a novel area of research that provides a new hope in malarial chemotherapy. The work presents various trends in malarial chemotherapy, as well as an exhaustive screening of different particulate drug delivery systems (PDDS) and the recent advances in the delivery of antimalarial drugs using the novel particulate drug delivery systems (NPDDS).
References
. Nielsen FS, Petersen KB, Ilertz AM.
Bioavailability of probucol from lipid
and surfactant based formulations in
minipigs: Influence of droplet size and
dietary state. Eur. J Pharm. Biopharm.
; 69: 553-562.
. Gilhotra RM, Bhardwaj VP, Mishra DN.
A Comparative review of recently
developed Particulate drug carrier
systems. Accessed online at
pharmainfo.net on 4th April, 2012 at
:05 pm.
. Gao P, Guyton ME, Huang T, Bauer
JM, Stefanski KJ, Lu Q. Enhanced oral
bioavailability of a poorly water soluble
drug PNU-91325 by supersaturable
formulations. Drug Dev. Ind. Pharm.
; 30: 221-229.
. Hou DZ, Xie CS, Huang K, Zhu CH.
The Production and Characteristics of
Solid lipid nanoparticles (SLN).
Biomaterials, 2003; 24: 1781-1785.
. Sarkar NN. Mifepristone: bioavailability,
pharmacokinetics and Usefuleffectiveness. Eur. J. Obstet.
Gynaecol. Reprod. Biol. 2002; 101:
-120.
. You J, Cui F, Li Q, Han X, Yu Y, Yang
M. A novel formulation design about
water-insoluble oily drug: Preparation
of zedoaryl turmeric oil microspheres
with self emulsifying ability and
evaluation in rabbits. Int. J. Pharm.
; 288: 315-323.
. Fouad EA, El-badry M, Mahrous GM,
Alsarra IA, Alashbban Z, Alanazi FK. In
vitro investigation for embedding
dextromethorphan in lipids using spray
drying. Digest J Nanomat Bio 2011;
(3):1129-1139.
. Porter CJH, Trevaskis NL, Charman
WN. Lipids and lipid based
formulations: optimizing the oral
delivery of lipophilic drugs. Nature Rev.
; 6: 231-248.
. Pouton CW. Lipid formulations for oral
administration of drugs: non
emulsifying, self ă emulsifying and self
micro emulsifying drug delivery
systems. Eur. J. Pharm. Sci. 2000; 11:
-98.
. Greenwood B, Mutabingwa T. Malaria
in 2002. Nature, 2002; 415: 670-672.
. World Health Organization (WHO).
Management of Severe malaria: A
Practical Handbook. 2nd ed. 2000.
p.84.
. Marsh K. Malaria disaster in Africa.
Lancet. 1998;352: 1965-1967.
. Santos-Magalhaes NS, Mosqueira
VCF. Nanotechnology Applied to the
treatment of malaria. Adv. Drug Deliv.
Rev. 2010;62: 560-575.
. Joshi M, Pathak S, Sharma S,
Patravale V. Solid microemulsion
preconcentrate (NanOsorb) of
artemether for effective treatment of
malaria. Int. J. Pharm. 2008;362: 172-
. World Health Organization. World
Malaria Report
WHO/HTM/GMP/2008.1.WHO,
Geneva, 2008.
. United Nations Millennium
Development Goals, 2002. Accessed
on 4th April, 2012.
. Thanh NV, Cowman AF, Hipgrave D,
Kim TB, Phuc BQ, Cong LD, Biggs BA.
Assessment of susceptibility of
Plasmodium falciparum to Chloroquine,
Quinine, Mefloquine, SulphadoxinePyrimethamine and Artemisinin in
Southern Vietnam. Trans. Royal Soc.
Trop. Med. Hyg. 2009;95: 513-517.
. Semete B, Kalombo L, Katata L, Swai
H. Nano-drug Delivery Systems:
Advances in TB, HIV and Malaria
Treatment. Smart Biomol. Med. 2010;
-52.
. Crawley J. Malaria: new challenges,
new treatments. Curr. Paed. 1999;9:
-41
. Scholte EJ, Knols BGJ, Takken W.
Infection of the malaria mosquito
Anopheles gambiae with the
entomopathogenic fungus Metarhizium
anisopliae reduces blood feeding and
fecundity. J Invert. Pathol. 2006;91: 43-
. Willcox ML, Rakotondrazafy E,
Andriamanalimanana R, Andrianasolo
D, Rasoanaivo P. Decreasing clinical
efficacy of Chloroquine in Ankazobe,
Central Highlands of Madagascar.
Trans. Roy. Soc. Trop. Med. Hyg.
;98: 311-314.
. OÊMeara WP, Bejon P, Mwangi TW,
Okiro EA, Peshu N, Snow RW, Newton
CR, Marsh K. Effect of a fall in malaria
transmission on morbidity and mortality
in Kiliji, Kenya. The lancet. 2008;372:
-1562.
. Snow RW, Marsh K. The epidemiology
of clinical malaria among African
children. Bulletin de lÊInstitut Pasteur.
;96: 15-23.
. Obonyo CO, Juma EA, Ogutu BR,
Vulude JM, Lau J. Amodiaquine
combined with
Sulphadoxine/Pyrimethamine versus
Artemisinin-based Combinations for the
treatment of Uncomplicated falciparum
malaria in Africa: a meta-analysis.
Trans Roy. Trop. Med. Hyg. 2007;101:
-126.
. Smrkovski LL, Buck RL, Alcantara AK,
Rodriguez CS, Uylangco CV. Studies
of resistance to Chloroquine, Quinine,
Amodiaquine and Mefloquine among
Philippine strains of P. falciparum.
Trans. Roy. Soc. Trop. Med. Hyg.
;79: 37-41.
. Murray M, Farrell GC. Effects of
Primaquine on hepatic microsomal
haemoproteins and drug oxidation.
Toxicol. 1986;42: 205-217.
. Quinine. Drug Encyclopaedia. [Online]
Available at
http://www.encyclopedia.com/topic/quin
ine.aspx. Accessed on 25 April 2012.
. Chloroquine Phospahte. Antibioticlist.
[Online] Available at
http://www.antibioticlist.com/chloroquin
e.html. Accessed on 25 April 2012.
. Klayman DL. Qinghaosu (Artemisinin):
An Anti-malarial drug from China.
Science. 1985;228: 1049-1055.
. Luska X. China Reconstructs. 1979; p.
. Butler AR, Wu YL. Artemisinin
(Qinghaosu): A New type of Antimalarial Drug. Chem. Soc. Rev. 1992;
(2): 85-90.
. World Health Organization. Guidelines
for the Treatment of malaria. 1st ed
World Malaria Report
WHO/HTM/MAL/2006.1108.WHO,
Geneva.
. Nosten F, White NJ. Artemisinin-based
combination treatment of falciparum
malaria. Amer. J. Trop. Med. Hyg.
; 77(6): 181-192.
. Jambou R, Legrand E, Niang M, Khim
N, Lim P, Volney B, Ekala MT,
Bouchier C, Esterre P, Fandeur T,
Mercereau-Puijalon O. Resistance of
P. falciparum field isolates to in vitro
artemether and point mutations of the
SERCA-type pfATPase 6. Lancet.
;366: 1960-1963.
. Anon. Resistance to artemisinin
derivatives along the Thai-Cambodian
border. Weekly Epidemiological
Record. 2007; 82: 360.
. Afonso A, Hunt P, Cheesman S, Alves
AC, Cunha CV, de Rosario V, Cravo P.
Malaria parasites can develop stable
resistance to artemisinin but lack
mutations in candidate genes atp6
(encoding the sarcoplasmic and
endoplasmic reticulum Ca2+ ATPase),
tctp, mdr1, and cg10. Antimicrob.
Agents Chemother. 2006;50: 480-488.
. Puri SK, Chandra R. Plasmodium
vinckei: Selection of a strain exhibiting
stable resistance to arteether. Exp.
Parasitol. 2006;114: 129-132.
. Ogbonna A, Uneke C. Artemisininbased Combination therapy for
uncomplicated malaria in Sub-Saharan
Africa: the efficacy, safety, resistance
and policy implementation since Abuja
Trans. Roy. Soc. Trop. Med.
Hyg. 2008; 102 (7): 621-627.
. Bloland PB. A Contrarian view of
malaria therapy policy in Africa. Am. J.
Trop. Med. Hyg. 2003; 68 (2): 125-126.
. Lindegardh N, Hampithakong W,
Kamanikom B, Singhasivanon P,
Socheat D, Yi P, Dondorp AM,
McGready R, Nosten F, White NJ, Day
NPJ. Major pitfalls in the measurement
of artemisinin derivatives in plasma in
clinical studies. J. Chromatogr. B.
; 876: 54-60.
. Sosnik A, Amiji M. Nanotechnology
solutions for infectious diseases in
developing nations. Adv. Drug Deliv.
Rev. 2010;62: 375-377.
. Pinto-Alphandary H, Andremont A,
Couvreur P. Targeted delivery of
antibiotics using liposomes and
nanoparticles: research and
applications. Int. J. Antimicrob. Agents.
;13: 155-168.
. Canchetier E, Paul M, Rivollet D, Fessi
H, Astier A, Deinaiu M. Therapeutic
evaluation of free and nanocapsuleencapsulated atovaquone in the
treatment of immune visceral
leishmaniasis. Ann. Trop. Med.
Parasitol. 2003;97: 259-268.
. 44. Mosqueira VCF, Loiseau PM,
Bories C, Legrand P, Devissaguet JP,
Barrat G. Efficacy and
Pharmacokinetics of intravenous
nanocapsule formulations of
halofantrine in Plasmodium bergheiinfected mice. Antimicrob. Agents
Chemother. 2004;48: 1222-1228.
. Langer R. Polymers for the sustained
release of proteins and other
macromolecules. Nature 1976;263:
-800.
. Makino K, Shibata A. Surface
properties of Liposomes depending on
their composition. Volume. 2006;4: 49-
. New RRC, Torchilin VP, Weissig V,
editors. Liposomes (Practical
Approach). London: Oxford University
Press, 2003. p. 20.
. Lasic DD, Papahadjopoulos D, editors.
Medical Application of Liposomes.
Amsterdam, Netherlands: Elsevier
Science B. V., 1998. p. 45.
. Malam Y, Loizidou M, Seifalian AM.
Liposomes and nanoparticles:
nanosized vehicles for drug delivery in
cancer. Trends Pharmacol. Sci. 2009;
(11): 592-599.
. Liposome. MyVisiontest. [online].
Available at
http://www.myvisiontest.com/newsarchi
ve.php?id=816. Accessed on 30 April,
. Nastruzzi C, Cortesi R, Esposito E,
Gambari R, Borgatti M, Bianchi N,
Feriotto G, Mischiati C. Liposomes as
carriers for DNA PNA hybrids. J Control
Rel. 2000; 68 (2): 237-249.
. Welz C, Neuhuber W, Schreier H,
Repp R, Rascher W, Fahr A. Nuclear
gene targeting using negatively
charged liposomes. Int. J. Pharm.
; 196 (2): 251-252.
. Mader C, Kupau S, Sleytr UB, Sara M.
S-layer coated liposomes as a versatile
system for entrapping and binding
target molecules. Biochem Biophys
Acta Biomembranes. 2000; 1463 (1):
-150.
. Weingarten C, Moufti A, Desjeux JF.
Oral ingestion of insulin liposomes:
Effects of the administration route. Life
Sci. 1981;28: 2747-2752.
. Laham A, Claperon N, Durussel JJ,
Fattal E, Delattre J, Puisieux F,
Couvreur P, Rossignol P. Intracarotidal
administration of liposomally-entrapped
ATP: Improved efficacy against
experimental brain ischemia.
Pharmacol. Res. Commun. 1988;20:
-705.
. Allison AC, Gregonadis G. Liposomes
as immunological adjuvants. Nature.
;252: 252.
. Alving CR, Richards RL. Liposomes
containing lipid A: A potent non-toxic
adjuvant for a human malaria
sporozoite vaccine. Immunol. Lett.
;25: 275-279.
. Madden TD, Harrington PR, Tai LCL,
Bally MB, Mayer LD, Redelmeier TE,
Loughrey HC, Tilcock CPS, Reinish
TW, Cullis PR. The accumulation of
drugs within large unilamellar vesicles
exhibiting a proton gradient: a survey.
Chem. Phys. Lipids. 1990;53: 37-46.
. Cullis PR, Hope MJ, Bally MB, Madden
TD, Mayer LD, Fenske DB. Influence of
pH gradients on the transbilayer
transport of drugs, lipids, peptides and
metal ions into large unilamellar
vesicles, BBA-Rev. Biomembranes.
;1331: 187-211.
. Stensrud G, Sande AS, Kristensen S,
Smistad G. Formulation and
Characterization of Primaquine loaded
liposomes prepared by a pH gradient
using experimental design. Int. J.
Pharm. 2000;198: 213-228.
. Arica B, Ozer AY, Ercam MT, Hincal
AA. Characterization, in vitro and in
vivo studies on primaquine
diphosphate liposomes. J
Microencapsul. 1995; 12 (5): 469-485.
. Gabriels M, Plaizier-Vercammen JA.
Physical and Chemical evaluation of
liposomes containing artesunate. J
Pharm. Biomed. Anal. 2003;31: 655-
. Chimanuka B, Gabriels M,
Detaeveriner MR, Plaizier-Vercammen
JA. Preparation of β-artemether
liposomes, their HPLC-UV evaluation
and relevance for clearing
recrudescent parasitaemia in
Plasmodium chabaudi malaria-infected
mice. J. Pharm. Biomed. Anal.
;28: 13-22.
. Bayomi MA, Al-Angary AA, Al-Mashal
AA, Al-Dardiri MM. In vivo evaluation of
arteether liposomes. Int. J. Pharm.
;175: 1-7.
. 65. Isacchi B, Bergonzi MC, Grazioso
M, Righeschi C, Pietretti A, Severini C,
Bilia AR. Artemisinin and artemisinin
plus curcumin liposomal formulations:
Enhanced anti-malarial efficacy against
Plasmodium berghei-infected mice.
Eur. J. Pharm. Biopharm. 2012;80:
-534.
. Soma CE, Dubernet C, Barratt G,
Benita S, Couvreur P. Investigation of
the role of macrophages on the
cytotoxicity of doxorubicin and
doxorubicin-loaded nanoparticles on
M5076 cells in vitro. J. Control. Rel.
;68: 283-289.
. Barratt GM. Therapeutic applications of
colloidal drug carriers. Pharm. Sci.
Technol. Today. 2000;3: 163-171.
. Vauthier C, Couvreur P.
Nanaomedicines: a new approach for
the treatment of serious diseases. J.
Biomed. Nanotechnol. 2007;3: 223-
. Forrest MI, Kwon GS. Clinical
developments in drug delivery
nanotechnology. Adv. Drug Deliv. Rev.
;60: 861-862.
. Barratt G. Colloidal drug carriers:
Achievements and Perspectives. Cell.
Mol. Life Sci. 2003;60: 21-37.
. Devalapally H, Cliakilam A, Amiji MM.
Role of nanotechnology in
Pharmaceutical product development.
J Pharm. Sci. 2007;96: 2547-2565.
. Kayser O, Kiderlen AF. Delivery
strategies for antiparasitics. Expert
Opin. Invest. Drugs. 2003;12: 197-207.
. Date AA, Joshi MD, Patravale VB.
Parasitic diseases: Liposomes and
polymeric nanoparticles versus lipid
nanoparticles. Adv. Drug Deliv. Rev.
;59: 505-521.
. Joshi M, Pathak S, Sharma S,
Patravale V. Design and in vivo
Pharmacodynamic evaluation of
nanostructured lipid carriers for
parenteral delivery of artemether:
Nanoject. Int. J. Pharm. 2008;364: 119-
. Wissing SA, Kayser O, Muller RH.
Solid Lipid nanoparticles for parenteral
drug delivery. Adv. Drug Deliv. Rev.
;56: 1257-1272.
. De Vries PJ, Dien TK. Clinical
pharmacology and therapeutic potential
of artemisinin and its derivatives in the
treatment of malaria. Drugs. 1996;52:
-836.
. Joshi M, Patravale V. Nanostructured
Lipid Carrier (NLC) based gel of
celecoxib. Int. J. Pharm. 2008;346:
-132.
. Yameogo JBG, Geze A, Choisnard L,
Putaux J-L, Gansane A, Sirima SB,
Semde R, Wouessidjewe D. Selfassembled biotransesterified
Cyclodextrins as Artemisinin
nanocarriers ă I: Formulation,
lyoavailability and in vitro antimalarial
activity assessment. Eur. J. Pharm.
Biopharm. 2012;80: 508-517.
. Klang S, Benita S. Design and
evaluation of submicron emulsions as
colloidal drug carriers for intravenous
administration. In: Benita S, editor.
Submicron emulsions in drug targeting
and delivery. Drug Targeting and
Delivery. vol. 9. Amsterdam: Harwood
Academic Publishers, 2000. p. 119-
. Singh K, Vingkar S. Formulation,
antimalarial activity and biodistribution
of oral lipid nanoemulsion of
primaquine. Int. J. Pharm. 2008;347:
-143.
. Daniels R. Galenic Principles of
modern skin care products. Skin care
Forum, 2001, 25.
. Sonneville-Auburn O, Simonnet JT,
LÊAlloret F. Nanoemulsions: a new
vehicle for skin care products. Adv.
Colloid. Interface Sci. 2004;108-109:
-149.
. Lawrence MJ, Rees GD.
Microemulsion-based media as novel
drug delivery systems. Adv. Drug Deliv.
Rev. 2000;45: 89-121.
. Alagusundaram M, Madhu SCC,
Umashankari K, Attuluri VB, Lavanya
C, Ramkanth S. Microspheres as a
novel drug delivery system ă A review.
Int. J. ChemTech Res. 2009; 1(3): 526-
. Attama AA, Igbonekwu CN. In vitro
properties of surface-modified solid
lipid microspheres containing an
antimalarial drug: Halofantrine. Asian
Pac. J. Trop. Med. 2011; 4(4): 253-258.
. Nishi KK, Jayakrishnan A. Preparation
and in vitro evaluation of Primaquineconjugated gum Arabic microspheres.
Trends Biomater. Artif. Organs. 2005;
(2): 191-197.
. Svenson SN, Tomalia DA. Dendrimers
in biomedical applications-reflections
on the field. Adv. Drug. Deliv. Rev.
;57: 2106-2129.
. Florence AT. Dendrimers: a versatile
targeting platform. Adv. Drug Deliv.
Rev. 2005;57: 2104-2105.
. Tomalia DA, Naylor AM, Goddard III
WA. Starburst dendrimers: Molecular
level control of size, shape, surface
chemistry, topology and flexibility from
atoms to macroscopic matter. Angew
Chem Int Ed Engl 1990;29: 138-175.
. Umesh G, Hrushikesh BA, Abhay A,
Narendra KJ. A review of in vitro-in vivo
investigations on dendrimers: the novel
nanoscopic drug carriers. Nanomed:
Nanotech. Biol. Med. 2006;2: 66-73.
. Bhadra D, Yadav AK, Bhadra S, Jain
NK. Glycodendrimeric nanoparticulate
carriers of primaquine phosphate for
liver targeting. Int. J. Pharm. 2005;295:
-233.
. Dendrimers. Nanodic.com. [Online]
Available at
http://www.nanodic.com/nanomaterial/
Dendrimer.htm. Accessed on 20 April,
. Bhadra D, Bhadra S, Jain NK.
PEGylated peptide dendrimeric carriers
for the delivery of antimalarial drug
chloroquine phosphate. Pharm. Res.
;23: 623-633.
. Bhadra D, Bhadra S, Jain NK.
Pegylated Lysine-based copolymeric
dendritic micelles for solubilization and
delivery of artemether. J Pharm
Pharmaceut Sci. 2005; 8(3): 467-482.
. Wakerly MG, Pouton CW, Meakin BJ,
Morton FS. Self-emulsification of
vegetable oil-non-ionic surfactant
mixtures. ACS Symp. Ser. 1986;311:
-255.
. Charman SA, Charman WN, Rogge
MC, Wilson TD, Dutko FJ, Pouton CW.
Self-emulsifying drug delivery systems:
formulation and biopharmaceutic
evaluation of an investigational
lipophilic compound. Pharm. Res.
;9: 87-93.
. Constantinides PP. Lipid
microemulsions for improving drug
dissolution and oral absorption:
Physical and biopharmaceutical
aspects. Pharm. Res. 1995;12: 1561-
. Craig DQM. The Use of selfemulsifying systems as a means of
improving drug delivery. B.T,
Gattefosse. 1993;86: 21-31.
. Gershanik T, Benita S. Self-dispersing
lipid formulations for improving oral
absorption of lipophilic drugs. Eur. J.
Pharm. Biopharm. 2000;50: 179-188.
. Rajesh BV, Reddy TK, Srikanth G,
Mallikarjun V, Nivethithai P. Lipidbased self-emulsifying drug delivery
system (SEDDS) for poorly water
soluble drugs: A review. J. Global
Pharm. Tech. 2010; 2(3): 47-55.
. Khoo S-M, Humberstone AJ, Porter
CJH, Edwards GA, Charman WN.
Formulation design and bioavailability
assessment of lipidic self-emulsifying
formulations of Halofantrine. Int. J.
Pharm. 1998;167: 155-164.
. Mandawgade SD, Sharma S, Pathak
S, Patravale VB. Development of
SMEDDs using natural lipophile:
Application to β-Artemether delivery.
Int. J. Pharm. 2008;362: 179-183.
. Kuentz M, Wyttenbach N, Kuhlmann O.
Application of a statistical method to
the absorption of a new model drug
from micellar and lipid formulations ă
evaluations of qualitative excipient
effects. Pharm Dev Technol. 2007;12:
-283.