Biological properties of Pegylated PLA (PLA-PEG-PLA) and its capability for intracellular delivery of poor soluble peptide drug, gramicidin
Keywords:
PLA-PEG-PLA block co-polymer, hemolytic activity, biocompatibility, FITC, gramicidin, nanoparticleAbstract
Poly lactic acid-co-poly ethylene glycol-co-Poly lactic acid (PLA-PEG-PLA) co-polymer was synthesized and after determination of its biological properties was used for intracellular delivery of poor soluble peptide drug, gramicidin. Toxicity of this polymer on LNCaP cell line was determined by MTT assay. Treatment of cells with fluorescein isothiocyanate (FITC) loaded nanoparticles and fluorescence microscopy indicates ability of this carrier for intracellular delivery. PLA-PEG-PLA nanoparticles containing poor soluble peptide drug, gramicidin, was prepared by solvent evaporation method. In order to confirm loading of gramicidin on PLA-PEG-PLA nanoparticles, FT-IR, spectrofluoremeteric, circular dichroism (CD), and scanning electron microscopy (SEM) studies were carried out. Our studies revealed treatment of prostate cancer cell line, LNCaP, with gramicidin loaded nanoparticles was more effective than gramicidin alone in killing cancer cells.
References
L.R. Brown, Expert Opinion on Drug Delivery, 2 (2005) 29.
V. Torchilin, Drug Discovery Today: Technologies, 5 (2008) e95.
J.K. Li, N. Wang, X.S. Wu, Journal of pharmaceutical sciences, 86 (1997) 891.
C.H. Rammelkamp, L. Weinstein, The Journal of Infectious Diseases, 71 (1942) 166.
N. Rapoport, Progress in Polymer Science, 32 (2007) 962.
F. Danhier, O. Feron, V. Préat, Journal of Controlled Release (2010).
Z.L. Tyrrell, Y. Shen, M. Radosz, Progress in Polymer Science (2010).
D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nature Nanotechnology, 2 (2007) 751.
I. Brigger, C. Dubernet, P. Couvreur, Advanced Drug Delivery Reviews, 54 (2002) 631.
C. Rijcken, O. Soga, W. Hennink, C.F. Nostrum, Journal of controlled release, 120 (2007) 131.
K. Miyata, R. James Christie, K. Kataoka, Reactive and Functional Polymers (2010).
X.B. Xiong, H. Uludag, A. Lavasanifar, Biomaterials, 30 (2009) 242.
D. Shenoy, S. Little, R. Langer, M. Amiji, Molecular pharmaceutics, 2 (2005) 357.
V. Naik, S. Krimm, Biophysical journal, 49 (1986) 1147.
Y.J. Liu, Z.J. Chen, N. Zhang.
O. Veiseh, J.W. Gunn, M. Zhang, Advanced Drug Delivery Reviews, 62 (2010) 284.
Q. Miao, D. Xu, Z. Wang, L. Xu, T. Wang, Y. Wu, D.B. Lovejoy, D.S. Kalinowski, D.R. Richardson, G. Nie, Biomaterials, 31 (2010) 7364.
S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, Journal of Controlled Release, 126 (2008) 187.
B. Haley, E. Frenkel, Elsevier, 2008, p. 57.
X. Wang, Y. Wang, Z.G. Chen, D.M. Shin, Cancer Research and Treatment: Official Journal of Korean Cancer Association, 41 (2009) 1.
Y. Shen, H. Tang, Y. Zhan, E.A. Van Kirk, W.J. Murdoch, Nanomedicine: Nanotechnology, Biology and Medicine, 5 (2009) 192.
M. Chidambaram, R. Manavalan, K. Kathiresan, Journal of Pharmacy & Pharmaceutical Sciences, 14 (2011) 67.
P. Xu, E. Gullotti, L. Tong, C.B. Highley, D.R. Errabelli, T. Hasan, J.X. Cheng, D.S. Kohane, Y. Yeo, Molecular pharmaceutics, 6 (2008) 190.
W. Qiao, B. Wang, Y. Wang, L. Yang, Y. Zhang, P. Shao, Journal of Nanomaterials, 2010 (2010) 7.
Z. Song, R. Feng, M. Sun, C. Guo, Y. Gao, L. Li, G. Zhai, Journal of Colloid and Interface Science (2010).
N. Nishiyama, K. Kataoka, Pharmacology & therapeutics, 112 (2006) 630.
B. Burkhart, N. Li, D. Langs, W. Pangborn, W. Duax, Proceedings of the National Academy of Sciences, 95 (1998) 12950.
G. Henle, C.A. Zittle, Experimental Biology and Medicine, 47 (1941) 193.
K. Mereish, DTIC Document, 1990.
N. Sarkar, D. Langley, H. Paulus, Proceedings of the National Academy of Sciences, 74 (1977) 1478.