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A b s t r a c t  
Zinc (Zn) has been shown to inhibit osteoclast differentiation, promote osteoblast activity, and 
enhance the bone formation. Zinc-containing calcium phosphate (Zn-TCP) implanted in rabbit 
femoral defect was demonstrated to stimulate bone formation. Other studies demonstrated that 
calcium phosphate compounds (MZF-CaP) incorporating magnesium (Mg2+), zinc and fluoride (F-) 
when administered either by injection or orally were effective in preventing bone loss (osteoporosis) 
induced by estrogen deficiency (ovariectomy) in a rat model. The objective of the present study was 
to investigate the preventive effect of similar compound, with F (MZF-CaP-L, MZF-CaP-H) and 
without F (MZ-CaP-L), when injected in ovariectomized (OVX) rats. MZF-CaP-L and MZ-CaP-L were 
prepared by precipitation at 90oC and MZF-CaP-H was prepared by sintering MZF-CaP-L at 900oC. 
The release of the ions from acidic buffer was determined. Suspensions of Zn-TCP, MZF-CaP-H, 
MZF-CaP-L and MZ-CaP-L (617 μg in 0.2 ml of 1% sodium alginate saline solution) were injected 
intramuscularly under anesthesia into 5-week-old OVX rats on Zn-deficient diet. One week after 
surgery, bone mineral density (BMD) and bone mineral content (BMC) of the rat femurs were 
measured using X-ray CT. The injections and X-ray CT and Zn ion plasma measurements were 
repeated every week for 12 weeks. The rats were sacrificed and the femurs removed after 12 
weeks. Bone mechanical strength was evaluated using the three-point bending test. MZ-CaP-L 
(without F), compared to the other compounds, showed the highest increase in the Zn2+ ion plasma 
concentration,  and the highest BMD, BMC and mechanical strength. 
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Introduction  

Osteoporosis results when the rate of bone formation is much 
lower than the rate of bone resorption resulting in bone loss. It is 
characterized by thinning and disorganized bone trabecular bone 
microstructure, leading to bone loss and susceptibility to fractures.  
Fractures lead to chronic pain, disability, and loss of independence, 
which decrease in the quality of life [1].  Bone resorption by 
osteoclasts and formation by osteoblasts are balanced under 
normal conditions. However, estrogen (female sex hormone) 
production decreases rapidly in postmenopausal women causing 
an increase in osteoclastic activity leading to the onset of 
osteoporosis after menopause [2].  Current osteoporosis therapy 
includes: calcium (Ca) and vitamin D; vitamin K2, estrogen, 
steroids, calcitonin, and bisphosphonates-based drugs [3, 4]. 

It has been demonstrated that zinc (Zn2+) ions inhibit the 
differentiation of osteoclasts and promotes osteoblast activity to 
enhance the formation of hard tissues [3-5].  A clinical relationship 
between osteoporosis and Zn deficiency has been observed in 
elderly subjects [6, 7].  Zinc, an essential trace element, is a 
cofactor of more than 200 enzymes, and is present in nearly every 
cell type in the body [8].  When a body is deficient in Zn, it induces 
symptoms such as the facilitation of bone resorption, decreased 
efficiency of bone formation, skin disease, taste disorders, lowering 
of the immune system, etc. [9-11]. 
Zinc-substituted tricalcium phosphate (Zn-TCP) ceramic prepared 
by Ito et al [12] was demonstrated to stimulate bone formation 
when implanted in rabbit femora [13].  This stimulatory effect may 
be attributed to the slow Zn2+ ion release from the ceramics.  
A calcium phosphate-based material (originally described as MZF-
CaP, now also described as synthetic bone mineral, SBM) 
consisting of apatite incorporating carbonate (CO3

2-), magnesium 
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induce a relatively higher zinc concentration in the plasma, causing 
a whole body effect and improvement in the legs on both sides. 

Conclusion 

MZ-CaP-L (without fluoride ions), a low-crystalline apatite with the 
highest solubility, induced high zinc concentration in plasma, 
causing a whole-body therapeutic effect on OVX rats, such as 
bone mineral density, bone mechanical strength, and body weight.  
Application of the system for the treatment of osteoporosis is 
expected. 
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